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Universality of probability distributions among two-dimensional turbulent flows
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~Received 1 July 1999; revised manuscript received 31 January 2000!

We study statistical properties of two-dimensional turbulent flows. Three systems are considered: the
Navier-Stokes equation, surface quasigeostrophic flow, and a model equation for thermal convection in the
Earth’s mantle. Direct numerical simulations are used to determine one-point fluctuation properties. Compara-
tive study shows universality of probability density functions~PDFs! across different types of flow. For
instance, the PDFs for derivatives of the advected quantity are the same for the three flows, once normalized
by the average size of fluctuations. The single-point statistics is surprisingly robust with respect to the nature
of the nonlinearity.

PACS number~s!: 47.27.Gs, 05.20.Jj, 92.10.Lq
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The central idea of classical turbulence theory is that c
tain statistical properties in turbulent flow are independen
the details of the flow, like its boundaries, dissipation mec
nism, and the kind of forcing, as long as the Reynolds nu
ber is sufficiently high@1#. In this sense turbulent flow would
be universal. In this article we shall investigate independe
not of boundary conditions, dissipation, or forcing, but lo
for universality acrossequations. This idea has long bee
demonstrated to hold for several classes of partial differen
equations. Certain partial differential equations, shar
common symmetries, exhibit identical fluctuation properti
once normalized by the standard deviations.~This is well
known from ‘‘quantum chaos’’ and ‘‘wave chaos’’@2#!. In
the present article it is demonstrated that three differ
equations describing fluid flow and subjected to the sa
external conditions exhibit the same statistics for their fl
tuations, once normalized by the average size of fluctuati

The three flows are described by advection-diffus
equations

]u

]t
1vW •¹u5D¹2u1 f . ~1a!

The scalar quantity advected isu(rW,t). The vectorrW de-
scribes the spatial location. The forcingf (rW,t) supplies the
energy dissipated via a dissipation constantD. The velocity

vW (rW,t) is a function ofu, best written in Fourier space,

vŴ ~kW ,t !5 i
kW3 û~kW ,t !

ukW ua
. ~1b!

The two-dimensional cross productkW3 û is to be understood
as a vector of lengthukW ûu and direction perpendicular tokW .

Different values ofa correspond to different flows@3#.
The two-dimensional Navier-Stokes equation isa52 andu

corresponds to the vorticity¹3vW . The surface quasigeo
strophic equation,a51, is a special case of the importa
quasigeostrophic equation that describes flow of a sha
layer on a rotating sphere, as relevant for planetary at
spheres and oceans@4#. In this case,u is physically inter-
preted as temperature, which drives the flow through
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r-
f
-
-

e

al
g
,

t
e
-
s.

w
o-

s

buoyancy effect. The third equation considered isa53,
which also appears in geophysical context as a limiting c
of a shallow flow on a rotating sphere with uniform intern
heating@5#. Also here,u is an ~active! temperature.

Other values ofa, integer or not, could be considered, b
this is not done here. There are numerous studies fora51
~e.g., Refs.@4,6–8#! and, of course, for the Navier-Stoke
equation, while other values ofa have received less attentio
@9,10#. Analytical comparisons between thea51 anda52
case are provided in Refs.@7,11,3#.

Multiplying Eq. ~1a! with u and averaging over spac
with periodic boundary conditions yields

1

2

]

]t
^u2&52D^u¹uu2&1^ f u&. ~2!

Consequently, the left-hand side of Eq.~1a! conserveŝ u2&
for all a. For a52 also^vW 2& is a conserved quantity, while

^vW 2& is identical to^u2& for a51, and^vW 2& is not conserved
for a53. Equation~1! is invariant under reflection,rW→2rW,
as well as the set of simultaneous transformationsrW→rWl, t
→tl2, u→u/la, and f→ f /la12 ~this is essentially the
Reynolds number invariance!. The family of flows with dif-
ferenta has been nameda turbulence@4#, although this term
appears in the literature also for other kinds of flow. We sh
consider isotropic, homogeneous, and statistically station
turbulence with white-in-time forcing.

The flow is simulated in a doubly periodic square bo
Fourier modes are labeledukW u51 if their wavelength equals
the box size. Forcing acts on large scales, 4<ukW u,6, with
constant amplitude but random phases renewed at each
step. The time step is held constant. Two-dimensional tur
lent flows produce vortices that merge and grow ever larg
This vorticity must be removed in order to reach an equil
rium state. This is done by adding a large-scale dissipat
2gu to the right-hand side of Eq.~1a!, restricted to 0,ukW u
<3. The parameter 1/g is much larger than other time scale
of motion, so that the lowest modes decay gradually. T
simulations are carried out with a pseudospectral met
over long time periods using fourth-order Runge-Kutta in
gration of the Fourier modes. A mild spectral filter is use
6568 ©2000 The American Physical Society
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without complete dealiasing, since it is not clear wheth
complete dealiasing improves or worsens the quality
simulations. Further details about the numerics are gi
elsewhere@10#.

The aforementioned invariance naturally defines a R
nolds number for flow of anya as Re5UL/D, whereU and
L are a velocity and length scale, respectively. We cho

U5A^vW 2& and L51 for a large-scale Reynolds numbe
With this definition the maximum Reynolds numbe
achieved are on the order of several thousands on a 1
31024 grid for each of the three flows.

In this article only one-point probability density function
~PDFs! are studied. First, the Navier-Stokes equationa
52) is treated, which is important by itself and also exe
plifies the variations and dependencies in the PDFs wi
one equation. Second, equations with different values oa
are compared with each other, which is the central conc
of this article.

The PDFs are obtained from spatial averaging of the fl
field and additional time averaging over 8–24 such sn
shots. Whenever PDFs are compared with each other in
subsequent figures they are scaled by their average fluc
tion, defined as

s5E dxuxuP~x!. ~3!

The integral is over allx. Instead of the first absolute mo
ment ~3! the standard deviation could be used as well.
PDFs of the Navier-Stokes equation presented here a
with the ones reported from recent simulations by Takaha
and Gotoh@12# at higher Reynolds numbers.

Figure 1 shows PDFs for different Reynolds numbers.
Fig. 1~a! we see similar but not at all identical shapes for t
PDFs, a behavior representative for the PDFs of other qu
tities as well.

According to Fig. 2~a! velocity components are distrib
uted Gaussian. The PDFs forvx andvy are almost identical,
as must be true for isotropic turbulence. If the two veloc
components are statistically independent of each other,
the PDF of the absolute value ofvW should be a two-
dimensional Maxwell distribution

P~x!5
x

s2 expS 2
x2

2s2D . ~4!

The parameters is thereby the standard deviation of th
Gaussian distribution forvx . The Maxwell distribution plot-
ted as dotted curve in Fig. 2~b! hence contains no free pa
rameter. It is a good first-order approximation.

As a matter of space not all PDFs can be presented h
The scalar~vorticity! is Gaussian in the center. The longit
dinal velocity derivatives are also Gaussian. This is parti
larly striking, since velocity derivatives of decaying turb
lence are not Gaussian@13,14#. Their core behaves muc
more like a Cauchy distribution

P~x!5
1

p

c

c21x2 ,
r
f
n

-

e

24

-
in

rn

-
he
a-

l
ee
hi

n

n-

en

re.

-

which has an inflection point even on a logarithmic plot.
Cauchy distribution follows theoretically from a ‘‘dilute
gas’’ of point vortices of equal strength that move random
see Ref.@13#. For forced two-dimensional turbulence]xu
and¹2u, for example, possess an inflection point on a log
rithmic scale.~Point vortex models cannot make any sensi
predictions on the scalar derivatives.!

PDFs ina turbulence have been previously reported fro
simulations at lower resolution in@15# ~Fig. 7!, where a ‘‘re-
markable similarity’’ has been pointed out for the PDFs
one of the variables~the scalaru).

Figure 3 shows PDFs for different types of flow. In ea
figure the PDFs of all three flows are shown simultaneou
and the different figures show scalar derivative]xu, scalar
dissipationDu¹uu2, and velocity componentvx . Apparently
the PDFs for the different flows are the same. The agreem
is for small as well as large fluctuations up to several st
dard deviations. The deviations in the far tails could be fu
damental or they could lie within measurement errors, si
the very largest fluctuations are inevitably undersampled

Not all PDFs overlap as accurately as the derivative ofu.
The deviations in Fig. 3~c! are somewhat larger. Other PDF
show even larger deviations, but in none of the investiga
variables is there any drastic difference. The PDFs for]xu,

FIG. 1. Probability density functions for the Navier-Stok
equation at different Reynolds numbers~a! vorticity derivative]xu
and ~b! vorticity dissipationDu¹uu2. Many small fluctuations ac-
count for most of the dissipation. The insets show the same dat
a logarithmic scale.
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6570 PRE 61NORBERT SCHORGHOFER
u¹uu2, vx ~and]yu, vy) closely agree over several standa
deviations of the respective variables. Slightly worse,
still amazing agreement is seen foru, ¹2u, uvu and¹3v. It
is conceivable that these deviations lie within measurem
errors. Some PDFs require longer averaging for converge
than others. Whether these deviations are fundamental or
to insufficient or fundamental statistics cannot be decid
with the data at hand and it remains therefore uncl
whether the universality extends to all local variables or n

The PDFs of Fig. 3 are related to each other by a sim
rescaling, except perhaps for very large fluctuations. T
establishes an invariance of PDFs with respect to the rela
between velocity and scalar and hence with respect to
nature of the nonlinearity.

The Reynolds numbers in the simulations fora51,2,3
are Re53900, 4500, 4200, respectively. At sufficiently hig
Reynolds number one does not expect any remaining R
nolds number dependence. Convergent PDFs, normalize
the standard deviation, have indeed been reported in
@12# at Reynolds numbers around 10 000. There is a w
dependence on the Reynolds number for the PDFs use
this study. In fact, Fig. 1 demonstrates this. Consequen
the flows should be compared at equal Reynolds numbe
the simulations the Reynolds number is only determined
retrospective and hence they are not precisely equal. H

FIG. 2. Probability density functions for velocities of th
Navier-Stokes at Re54500.~a! Velocity componentvx and~b! ab-

solute value of velocityuvW u. The dotted lines are theoretical fit
~Gaussian and Maxwellian!.
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ever, since the Reynolds number dependence is slow an
proximate agreement suffices. That is to say, the above
ferences in the Reynolds numbers are not significa
Comparisons at a lower Reynolds number~around 1300!
yield the same universalities.

The flows have been compared for one set of conditio
In particular, the same boundary conditions and forcing a

FIG. 3. The main result. Probability density functions for diffe
enta. The flows have the same forcing and similar Reynolds nu
ber.~a! The gradient]xu, ~b! the scalar dissipationDu¹uu2, and~c!
the velocity componentvx . The PDFs are divided by their respec
tive average fluctuations. The shape of the PDFs is independent
the type of flow.
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PRE 61 6571UNIVERSALITY OF PROBABILITY DISTRIBUTIONS . . .
used for all three flows. One can imagine changing the t
correlation of the forcing, the order of the dissipation, or t
boundary conditions among other possibilities. It isnot
claimed here that the probability functions will remain t
same. For instance, a moving boundary will certainly alte
least some of the PDFs. However, based on the evide
presented here one would expect the altered PDFs to
again identical among the different flows. The finding here
one of robustness with respect to the dynamics of the fl
but not necessarily with respect to other alterations.

The three equations describe physically different flow
Also their mathematical properties differ in important way
For example, the stretching of contour lines, conservation
kinetic energy, and the locality of a presumable enstrop
cascade@9,10# change witha. In spite of these immens
differences, the fluctuation properties vary only in absol
size. Of course, there are also commonalities among the
ferent flows, namely, the number of quadratically conser
quantities, incompressibility, reflection symmetry, and Re
nolds number invariance. It remains an open question h
far the universality generalizes to other kinds of advecti
diffusion equations with a different type of velocity-scal
relation than investigated here.

To summarize, several probability density functions
three different flows have identical shapes. These flows
described by advection equations with an incompressible
s.
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locity field, reflection symmetry, and Reynolds number
variance. They are compared at identical external conditi
~same boundary conditions and forcing! and have the same
dissipation mechanism. For the family of flows describe
the particular nature of the nonlinearity does not alter
probability of fluctuations, besides their average amplitu
This demonstrates that fluctuations in fully developed tw
dimensional turbulence arise from a simple and gene
mechanism, perhaps of purely statistical nature, since
cific dynamics does not matter. No corresponding claim
made about other important statistical properties, such
spatial correlations or spectra@10#, which are not single-
point properties.
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