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Universality of probability distributions among two-dimensional turbulent flows
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We study statistical properties of two-dimensional turbulent flows. Three systems are considered: the
Navier-Stokes equation, surface quasigeostrophic flow, and a model equation for thermal convection in the
Earth’s mantle. Direct numerical simulations are used to determine one-point fluctuation properties. Compara-
tive study shows universality of probability density functiofDF9 across different types of flow. For
instance, the PDFs for derivatives of the advected quantity are the same for the three flows, once normalized
by the average size of fluctuations. The single-point statistics is surprisingly robust with respect to the nature
of the nonlinearity.

PACS numbgs): 47.27.Gs, 05.20.Jj, 92.10.Lq

The central idea of classical turbulence theory is that cerbuoyancy effect. The third equation consideredais 3,
tain statistical properties in turbulent flow are independent ofvhich also appears in geophysical context as a limiting case
the details of the flow, like its boundaries, dissipation mechaef a shallow flow on a rotating sphere with uniform internal
nism, and the kind of forcing, as long as the Reynolds numheating[5]. Also here,§ is an(active) temperature.
ber is sufficiently higH1]. In this sense turbulent flow would Other values ofy, integer or not, could be considered, but
be universal. In this article we shall investigate independencehis is not done here. There are numerous studiesfed
not of boundary conditions, dissipation, or forcing, but look (e.g., Refs[4,6—8)) and, of course, for the Navier-Stokes
for universality acrossquations This idea has long been equation, while other values af have received less attention
demonstrated to hold for several classes of partial differentigl9,10]. Analytical comparisons between the=1 anda=2
equations. Certain partial differential equations, sharingcase are provided in Refgz,11,3.
common symmetries, exhibit identical fluctuation properties, Multiplying Eq. (1a with § and averaging over space
once normalized by the standard deviatio(Ehis is well  with periodic boundary conditions yields
known from “quantum chaos” and “wave chaog2]). In
the present article it is demonstrated that three different
equations describing fluid flow and subjected to the same
external conditions exhibit the same statistics for their fluc-
tuations, once normalized by the average size of fluctuations. . )
The three flows are described by advection-diffusionConsequently, the left-hand side of Hda) conserveg 6)

(6%)=—D(|V|?)+(f ). (2

N| -
2|

equations for all «. For a=2 also(v?) is a conserved quantity, while
(v?) is identical to( #?) for «=1, and(v?) is not conserved
‘?_gﬂj,vgz DV24+f (13 for = 3. Equation(1) is invariant under reflectiom,— —r,
ot '

as well as the set of simultaneous transformationsr\, t

R R —1tA\2, 60— 6/\*, and f—f/\N"? (this is essentially the
The scalar quantity advected #&r,t). The vectorr de-  Reynolds number invariangeThe family of flows with dif-
scribes the spatial location. The forcirigr,t) supplies the ferenta has been named turbulence 4], although this term
energy dissipated via a dissipation constAnfThe velocity = appears in the literature also for other kinds of flow. We shall

u(r,t) is a function of@, best written in Fourier space, consider isotropic, homogeneous, and statistically stationary
turbulence with white-in-time forcing.
R K b(E ) The flow is simulated in a doubly periodic square box.
v(K,t)=i PG (1b)  Fourier modes are labelé#| =1 if their wavelength equals

the box size. Forcing acts on large scaless|K| <6, with

) ) oA constant amplitude but random phases renewed at each time

The two-dimensional cross produck ¢ is to be understood - step The time step is held constant. Two-dimensional turbu-

as a vector of lengthké| and direction perpendicular ta lent flows produce vortices that merge and grow ever larger.
Different values ofa correspond to different flowE3]. This vorticity must be removed in order to reach an equilib-

The two-dimensional Navier-Stokes equatiorvis 2 andé  rium state. This is done by adding a large-scale dissipation

corresponds to the vorticit]¥y/ X v. The surface quasigeo- — 6 to the right-hand side of Eq1a), restricted to &<|k|
strophic equationg=1, is a special case of the important <3. The parameter 4/is much larger than other time scales
quasigeostrophic equation that describes flow of a shallowf motion, so that the lowest modes decay gradually. The
layer on a rotating sphere, as relevant for planetary atmosimulations are carried out with a pseudospectral method
spheres and oceai4]. In this case,d is physically inter- over long time periods using fourth-order Runge-Kutta inte-
preted as temperature, which drives the flow through itgration of the Fourier modes. A mild spectral filter is used,
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without complete dealiasing, since it is not clear whether °°

elsewherg 10]. 4T o001

The aforementioned invariance naturally defines a Rey %[ [/
nolds number for flow of any as Re=UL/D, whereU and  __ o3} 1006
-1

L are a velocity and length scale, respectively. We choos% oos |

U=+(v?) and L=1 for a large-scale Reynolds number. §&
With this definition the maximum Reynolds numbers
achieved are on the order of several thousands on a 10z °*f
X 1024 grid for each of the three flows. o1 |

In this article only one-point probability density functions
(PDF9 are studied. First, the Navier-Stokes equatian (
=2) is treated, which is important by itself and also exem- %0 5 0
plifies the variations and dependencies in the PDFs withir® oy d/o
one equation. Second, equations with different valueg of 5 :
are compared with each other, which is the central concer Re=1200 ——
of this article.

The PDFs are obtained from spatial averaging of the flown
field and additional time averaging over 8—24 such snap .
shots. Whenever PDFs are compared with each other in tt <3
subsequent figures they are scaled by their average fluctu "
tion, defined as

et ) 'Re=4500 —
complete dealiasing improves or worsens the quality ol o} DA: Re=1200 - -
simulations. Further details about the numerics are giver | oot y ny Re= 400 -

0.05 -
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T

N
T

P(D|V8{%c)

cr=f dx|x|P(x). ©)

The integral is over alk. Instead of the first absolute mo- . .
ment (3) the standard deviation could be used as well. All 0 05 1 N
PDFs of the Navier-Stokes equation presented here agre DIVe(/o
with the ones reported from recent simulations by Takahashi

and .GOtOHlZ] at higher Reyn(_)lds numbers. equation at different Reynolds numbéeg vorticity derivatived, 6
Figure 1 shows PDFs for different Reynolds numbers. IMand (b) vorticity dissipationD|V 6|2. Many small fluctuations ac-

Fig. 1(a) we see similar but not at all identical shapes for thecoynt for most of the dissipation. The insets show the same data on
PDFs, a behavior representative for the PDFs of other quary jogarithmic scale.

tities as well.
According to Fig. 2a) velocity components are distrib-
uted Gaussian. The PDFs fog andv, are almost identical,

L .
25 3 35

FIG. 1. Probability density functions for the Navier-Stokes

which has an inflection point even on a logarithmic plot. A
| . . Cauchy distribution follows theoretically from a “dilute
as must be true for isotropic turbulence. If the two velocity ;oo o point vortices of equal strength that move randomly,
components are statistically indeperjdent of each other, thel),o Ref.[13]. For forced two-dimensional turbulencg 6
the PDF of the absolute value af should be a two- andV?2g, for example, possess an inflection point on a loga-
dimensional Maxwell distribution rithmic scale(Point vortex models cannot make any sensible
predictions on the scalar derivatives.
X NG PDFs ina turbulence have been previously reported from
P(x)= ?ex% - ﬁ) : (4 simulations at lower resolution iL5] (Fig. 7), where a “re-

markable similarity” has been pointed out for the PDFs of
The parametess is thereby the standard deviation of the

one of the variablegthe scalarg).
Gaussian distribution faw, . The Maxwell distribution plot- Figure 3 shows PDF's for different types of flow. In each
ted as dotted curve in Fig.() hence contains no free pa-

figure the PDFs of all three flows are shown simultaneously,
: . o and the different figures show scalar derivati%g, scalar

rameter. It is a good first-order approximation.

As a matter of space not all PDFs can be presented her

dissipationD|V 6|2, and velocity component, . Apparently
The scalarvorticity) is Gaussian in the center. The longitu- e PDFs for the different flows are the same. The agreement
. . ) S X - 1 N€IONGIU= 5o or small as well as large fluctuations up to several stan-
dinal velocity derivatives are also Gaussian. This is particu-

larly striking, since velocity derivatives of decaying turbu- dard deviations. The dey|at|qn§ in the far tails could be fun-
lence are n(')t Gaussidii3.14,. Their core behaves much damental or they could .Ile W|th|n.me§surement errors, since
more like a Cauchy distrib’utic;n the very largest fluctuations are inevitably under_sampled.
Not all PDFs overlap as accurately as the derivativé.of
The deviations in Fig. &) are somewhat larger. Other PDFs
P(x)= 1 c show even larger deviations, but in none of the investigated
m C2+ X2 variables is there any drastic difference. The PDFsia,
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FIG. 2. Probability density functions for velocities of the ° 1
Navier-Stokes at Re4500.(a) Velocity component, and(b) ab-
solute value of velocityv|. The dotted lines are theoretical fits
(Gaussian and Maxwellian 025

03
0.1

|V 6], vy (anddy 6, vy) closely agree over several standard
deviations of the respective variables. Slightly worse, bu@ o
still amazing agreement is seen #@rv24, |[v| andVxuv. It &
is conceivable that these deviations lie within measuremer
errors. Some PDFs require longer averaging for convergenc
than others. Whether these deviations are fundamental or di
to insufficient or fundamental statistics cannot be decidet 4
with the data at hand and it remains therefore unclea
whether the universality extends to all local variables or not 0

The PDFs of Fig. 3 are related to each other by a simpl¢(©)
rescaling, except perhaps for very large fluctuations. This
establishes an invariance of PDFs with respect to the relation FIG. 3. The main result. Probability density functions for differ-
between velocity and scalar and hence with respect to thenta. The flows have the same forcing and similar Reynolds num-
nature of the nonlinearity. ber.(a) The gradien®, 6, (b) the scalar dissipatioB|V 6|2, and(c)

The Reynolds numbers in the simulations fer1,2,3 the velocity component, . The PDFs are divided by their respec-
are Re=3900, 4500, 4200, respectively. At sufficiently high tive average fluctuationr. The shape of the PDFs is independent of
Reynolds number one does not expect any remaining ReyP® type of flow.
nolds number dependence. Convergent PDFs, normalized on
the standard deviation, have indeed been reported in Reéver, since the Reynolds number dependence is slow an ap-
[12] at Reynolds numbers around 10000. There is a weakroximate agreement suffices. That is to say, the above dif-
dependence on the Reynolds number for the PDFs used farences in the Reynolds numbers are not significant.
this study. In fact, Fig. 1 demonstrates this. ConsequentlyComparisons at a lower Reynolds numiaround 130D
the flows should be compared at equal Reynolds number. Iyield the same universalities.
the simulations the Reynolds number is only determined in The flows have been compared for one set of conditions.
retrospective and hence they are not precisely equal. Hown particular, the same boundary conditions and forcing are
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used for all three flows. One can imagine changing the timdocity field, reflection symmetry, and Reynolds number in-
correlation of the forcing, the order of the dissipation, or thevariance. They are compared at identical external conditions
boundary conditions among other possibilities. Itrist  (same boundary conditions and forcirand have the same
claimed here that the probability functions will remain the dissipation mechanism. For the family of flows described,
same. For instance, a moving boundary will certainly alter athe particular nature of the nonlinearity does not alter the
least some of the PDFs. However, based on the evidenggopability of fluctuations, besides their average amplitude.
presented here one would expect the altered PDFs to behis demonstrates that fluctuations in fully developed two-
again identical among the different flows. The finding here isgimensional turbulence arise from a simple and general
one of robustness with reSpeCt to the dynamiCS of the ﬂOWmechanism' perhaps of pure|y statistical nature, since spe-
but not necessarily with respect to other alterations. cific dynamics does not matter. No corresponding claim is
The three equations describe physically different flowsmade about other important statistical properties, such as

Also their mathematical properties d|ffer in important V\{ays.spatia| correlations or Spectl[ao], which are not Sing'e_
For example, the stretching of contour lines, conservation ohoint properties.

kinetic energy, and the locality of a presumable enstrophy

cascad€g9,10] change witha. In spite of these immense

differences, the fluctuation properties vary only in absolute ACKNOWLEDGMENTS
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